Thursday, 11 July 2013

What Is a Good Test Case?

“A test case specifies the pretest state of the IUT and its environment, the test inputs or conditions, and the expected result. The expected result specifies what the IUT should produce from the test inputs. This specification includes messages generated by the IUT, exceptions, returned values, and resultant state of the IUT and its environment. Test cases may also specify initial and resulting conditions for other objects that constitute the IUT and its environment.” In practice, many things are referred to as test cases even though they are far from being fully documented. Brian Marick uses a related term to describe the lightly documented test case, the test idea:
“A test idea is a brief statement of something that should be tested. For example, if you're testing a square root function, one idea for a test would be ‘test a number less than zero’. The idea is to check if the code handles an error case.” In my view, a test case is a question that you ask of the program. The point of running the test is to gain information, for example whether the program will pass or fail the test. It may or may not be specified in great procedural detail, as long as it is clear what is the idea of the test and how to apply that idea to some specific aspect (feature, for example) of the product. If the documentation is an essential aspect of a test case, in your vocabulary, please substitute the term “test idea” for “test case” in everything that follows. An important implication of defining a test case as a question is that a test case must be reasonably capable of revealing information.
▪ Under this definition, the scope of test cases changes as the program gets more stable. Early in testing, when anything in the program can be broken, trying the largest “legal” value in a numeric input field is a sensible test. But weeks later, after the program has passed this test several times over several builds, a standalone test of this one field is no longer a test case because there is only a miniscule probability of failure. A more appropriate test case at this point might combine boundaries of ten different variables at the same time or place the boundary in the context of a long- sequence test or a scenario.
▪ Also, under this definition, the metrics that report the number of test cases are meaningless. What do you do with a set of 20 single-variable tests that were interesting a few weeks ago but now should be retired or merged into a combination? Suppose you create a combination test that includes the 20 tests. Should the metric report this one test, 20 tests, or 21? What about the tests that you run only once? What about the tests that you design and implement but never run because the program design changes in ways that make these tests uninteresting? Another implication of the definition is that a test is not necessarily designed to expose a defect. The goal is information. Very often, the information sought involves defects, but not always.  To assess the value of a test, we should ask how well it provides the information we’re looking for.
Information Objectives So what are we trying to learn or achieve when we run tests? Here are some examples:

▪ Find defects. This is the classic objective of testing. A test is run in order to trigger failures that expose defects. Generally, we look for defects in all interesting parts of the product.
▪ Maximize bug count. The distinction between this and “find defects” is that total number of bugs is more important than coverage. We might focus narrowly, on only a few high- risk features, if this is the way to find the most bugs in the time available.
▪ Block premature product releases. This tester stops premature shipment by finding bugs so serious that no one would ship the product until they are fixed. For every release- decision meeting, the tester’s goal is to have new showstopper bugs.
▪ Help managers make ship / no-ship decisions. Managers are typically concerned with risk in the field. They want to know about coverage (maybe not the simplistic code coverage statistics, but some indicators of how much of the product has been addressed and how much is left), and how important the known problems are. Problems that appear significant on paper but will not lead to customer dissatisfaction are probably not relevant to the ship decision.
▪ Minimize technical support costs. Working in conjunction with a technical support or help desk group, the test team identifies the issues that lead to calls for support. These are often peripherally related to the product under test--for example, getting the product to work with a specific printer or to import data successfully from a third party database might prevent more calls than a low-frequency, data-corrupting crash.
▪ Assess conformance to specification. Any claim made in the specification is checked. Program characteristics not addressed in the specification are not (as part of this objective) checked.
▪ Conform to regulations. If a regulation specifies a certain type of coverage (such as, at least one test for every claim made about the product), the test group creates the appropriate tests. If the regulation specifies a style for the specifications or other documentation, the test group probably checks the style. In general, the test group is focusing on anything covered by regulation and (in the context of this objective) nothing that is not covered by regulation.
▪ Minimize safety-related lawsuit risk. Any error that could lead to an accident or injury is of primary interest. Errors that lead to loss of time or data or corrupt data, but that don’t carry a risk of injury or damage to physical things are out of scope.
▪ Find safe scenarios for use of the product (find ways to get it to work, in spite of the bugs). Sometimes, all that you’re looking for is one way to do a task that will consistently work--one set of instructions that someone else can follow that will reliably deliver the benefit they are supposed to lead to. In this case, the tester is not looking for bugs. He is trying out, empirically refining and documenting, a way to do a task.
▪ Assess quality. This is a tricky objective because quality is multi-dimensional. The nature of quality depends on the nature of the product. For example, a computer game that is rock solid but not entertaining is a lousy game. To assess quality -- to measure and report back on the level of quality -- you probably need a clear definition of the most important quality criteria for this product, and then you need a theory that relates test results to the definition. For example, reliability is not just about the number of bugs in the product. It is (or is often defined as being) about the number of reliability-related failures that can beexpected in a period of time or a period of use. (Reliability-related? In measuring reliability, an organization might not care, for example, about misspellings in error messages.) To make this prediction, you need a mathematically and empirically sound model that links test results to reliability. Testing involves gathering the data needed by the model. This might involve extensive work in areas of the product believed to be stable as well as some work in weaker areas. Imagine a reliability model based on counting bugs found (perhaps weighted by some type of severity) per N lines of code or per K hours of testing. Finding the bugs is important. Eliminating duplicates is important. Troubleshooting to make the bug report easier to understand and more likely to fix is (in the context of assessment) out of scope.
▪ Verify correctness of the product. It is impossible to do this by testing. You can prove that the product is not correct or you can demonstrate that you didn’t find any errors in a given period of time using a given testing strategy. However, you can’t test exhaustively, and the product might fail under conditions that you did not test. The best you can do (if you have a solid, credible model) is assessment--test-based estimation of the probability of errors. (See the discussion of reliability, above).
▪ Assure quality. Despite the common title, quality assurance, you can’t assure quality by testing. You can’t assure quality by gathering metrics. You can’t assure quality by setting standards. Quality assurance involves building a high quality product and for that, you need skilled people throughout development who have time and motivation and an appropriate balance of direction and creative freedom. This is out of scope for a test organization. It is within scope for the project manager and associated executives. The test organization can certainly help in this process by performing a wide range of technical investigations, but those investigations are not quality assurance. Given a testing objective, the good test series provides information directly relevant to that objective.
Tests Intended to Expose Defects Let’s narrow our focus to the test group that has two primary objectives:
▪ Find bugs that the rest of the development group will consider relevant (worth reporting) and
▪ Get these bugs fixed. Even within these objectives, tests can be good in many different ways. For example, we might say that one test is better than another if it is:
▪ More powerful. I define power in the usual statistical sense as more likely to expose a bug if it the bug is there. Note that Test 1 can be more powerful than Test 2 for one type of bug and less powerful than Test 2 for a different type of bug.
▪ More likely to yield significant (more motivating, more persuasive) results. A problem is significant if a stakeholder with influence would protest if the problem is not fixed. (A stakeholder is a person who is affected by the product. A stakeholder with influence is someone whose preference or opinion might result in change to the product.)
▪ More credible. A credible test is more likely to be taken as a realistic (or reasonable) set of operations by the programmer or another stakeholder with influence. “Corner case” is an example of a phrase used by programmers to say that a test or bug is non-credible: “No one would do that.” A test case is credible if some (or all) stakeholders agree that it is realistic.
▪ Representative of events more likely to be encountered by the customer. A population of tests can be designed to be highly credible. Set up your population to reflect actual usage probabilities. The more frequent clusters of activities are more likely to be covered or covered more thoroughly. (I say cluster of activities to suggest that many features are used together and so we might track which combinations of features are used and in what order, and reflect this more specific information in our analysis.) For more details, read Musa's (1998) work on software reliability engineering.
▪ Easier to evaluate. The question is, did the program pass or fail the test? Ease of Evaluation. The tester should be able to determine, quickly and easily, whether the program passed or failed the test. It is not enough that it is possible to tell whether the program passed or failed. The harder evaluation is, or the longer it takes, the more likely it is that failures will slip through unnoticed. Faced with time-consuming evaluation, the tester will take shortcuts and find ways to less expensively guess whether the program is OK or not. These shortcuts will typically be imperfectly accurate (that is, they may miss obvious bugs or they may flag correct code as erroneous.)
▪ More useful for troubleshooting. For example, high volume automated tests will often crash the system under test without providing much information about the relevant test conditions needed to reproduce the problem. They are not useful for troubleshooting. Tests that are harder to repeat are less useful for troubleshooting. Tests that are harder to perform are less likely to be performed correctly the next time, when you are troubleshooting a failure that was exposed by this test.
▪ More informative. A test provides value to the extent that we learn from it. In most cases, you learn more from the test that the program passes than the one the program fails, but the informative test will teach you something (reduce your uncertainty) whether the program passes it or fails.
o For example, if we have already run a test in several builds, and the program reliably passed it each time, we will expect the program to pass this test again. Another "pass" result from the reused test doesn't contribute anything to our mental model of the program. o The notion of equivalence classes provides another example of information value. Behind any test is a set of tests that are sufficiently similar to it that we think of the other tests as essentially redundant with this one. In traditional jargon, this is the "equivalence class" or the "equivalence partition." If the tests are sufficiently similar, there is little added information to be obtained by running the second one after running the first. o This criterion is closely related to Karl Popper’s theory of value of experiments. Good experiments involve risky predictions. The theory predicts something that many people would expect not to be true. Either your favorite theory is false or lots of people are surprised. Popper’s analysis of what makes for good experiments (good tests) is a core belief in a mainstream approach to the philosophy of science.

No comments:

Post a Comment